
Battrax Quad Negative SLIC Protector

This *Battrax* device is an integrated overvoltage protection solution for SLIC-based (Subscriber Line Interface Circuit) line cards. This six-pin device is constructed using four SCRs and four gate diodes.

The device is referenced to V_{BAT} and conducts when a voltage that is more negative than - V_{REF} is applied to the cathode (pins 1, 3, 4, or 6) of the SCR. During conduction, all negative transients are shorted to Ground. All positive transients are passed to Ground by steering diodes.

For specific diagrams showing these Battrax applications, see Figure 3.37.

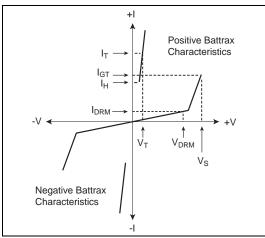
Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} µAmps	I _{GT} mAmps	I _T Amps	I _H mAmps	C _O pF
B1101U_4 **	-V _{REF} + -1.2V	-V _{REF} + -10V	4	5	100	2.2	100	50
B1161U_4 **	-V _{REF} + -1.2V	-V _{REF} + -10V	4	5	100	2.2	160	50
B1201U_4 **	-V _{REF} + -1.2V	-V _{REF} + -10V	4	5	100	2.2	200	50

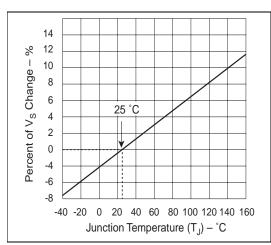
^{*} For individual "UA" and "UC" surge ratings, see table below.

General Notes:

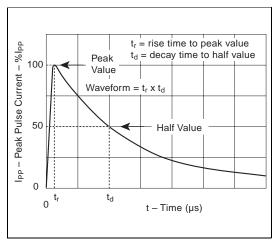
- All measurements are made at an ambient temperature of 25 °C. I_{PP} applies to -40 °C through +85 °C temperature range.
- $\ensuremath{\mathsf{I}_{PP}}$ is a repetitive surge rating and is guaranteed for the life of the product.
- IPP ratings assume a V_{REF} = ±48 V.
- V_{DRM} is measured at I_{DRM}.
- V_S is measured at 100 V/μs.
- Off-state capacitance (C₀) is measured at 1 MHz with a 2 V bias and is a typical value. "UC" product is approximately 2x the listed value.
- V_{REF} maximum value for the negative Battrax is -200 V.

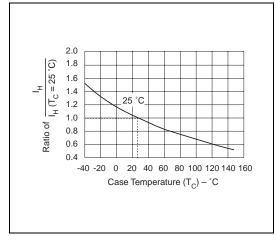

Surge Ratings

Series	I _{PP} 2x10 µs Amps	I _{PP} 8x20 μs Amps	I _{PP} 10x160 µs Amps	I _{PP} 10x560 μs Amps	I _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
Α	150	150	90	50	45	20	500
С	500	400	200	120	100	50	500


^{**} Contact factory for release date.

Thermal Considerations


Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	Operating Junction Temperature Range	-40 to +125	°C
1 2 3 4	Ts	Storage Temperature Range	-65 to +150	°C
	$R_{ hetaJA}$	Thermal Resistance: Junction to Ambient	60	°C/W


V-I Characteristics

Normalized V_S Change versus Junction Temperature

 $t_{r} \ x \ t_{d}$ Pulse Wave-form

Normalized DC Holding Current versus Case Temperature